If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+20t+220
We move all terms to the left:
0-(-16t^2+20t+220)=0
We add all the numbers together, and all the variables
-(-16t^2+20t+220)=0
We get rid of parentheses
16t^2-20t-220=0
a = 16; b = -20; c = -220;
Δ = b2-4ac
Δ = -202-4·16·(-220)
Δ = 14480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14480}=\sqrt{16*905}=\sqrt{16}*\sqrt{905}=4\sqrt{905}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{905}}{2*16}=\frac{20-4\sqrt{905}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{905}}{2*16}=\frac{20+4\sqrt{905}}{32} $
| -4(3x-8)=31+9x | | 1+6y=11 | | 81=u/9+3 | | -4(3x-8)=31+ | | n+398=7 | | 249=31-w | | 11x-2=8x+22 | | 3k-6=-3 | | 6m(m+2)=5m-2 | | b+1.2=10 | | 72=u/8+3 | | 6x+37=103 | | x/(-9)=–6 | | 0=u/8+3 | | 7w+27=16w | | 81=u/8+3 | | 31=x/2+19 | | 2x+3+6x+1=180 | | -90=u/8+3 | | 5r+7=76 | | 61=7x+5 | | 240=-x/3+19 | | -3=3x+6(-x3) | | 1w-8=-5 | | 7x+6+90+15x-8=180 | | 23=3k+11 | | -9w-8=-5 | | b4+ 13=17 | | 1=-8x+3(x-8) | | 19x+4+11x-4=180 | | X=25+100y | | 4w-8=-5 |